A spatial analysis on seismo-ionospheric anomalies observed by DEMETER during the 2008 M8.0 Wenchuan earthquake

J.Y. Liu a,b,⇑, Y.I. Chen c, C.C. Huang b, M. Parrot d, X.H. Shen e, S.A. Pulinets f, Q.S. Yang a, Y.Y. Ho g

a College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
b Institute of Space Science, National Central University, Chung-Li 32001, Taiwan
c Institute of Statistics, National Central University, Chung-Li 32001, Taiwan
d LPC2E, CNRS, Orleans, France
e Institute of Earthquake Science, CEA, 100036 Beijing, China
f Institute of Space Research, Russian Academy of Sciences, Moscow, Russia
g Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan

ABSTRACT

This paper examines seismo-ionospheric anomalies (SIAs) observed by the French satellite DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) during the 12 May 2008 M8.0 Wenchuan earthquake. Both daytime and nighttime electron density (Ne), electron temperature (Te), ion density (Ni) and ion temperature (Ti) are investigated. A statistical analysis of the box-and-whisker method is utilized to see if the four DEMETER datasets 1–6 days before and after the earthquake are significantly different. The analysis is employed to investigate the epicenter and three reference areas along the same magnetic latitude discriminating the SIAs from global effects. Results show that the nighttime Ne and Ni (daytime Ti) over the epicenter significantly decrease (increase) 1–6 days before the earthquake. The intersections of the global distribution of the significant differences (or anomalous changes) in the nighttime Ne, the nighttime Ni, and the daytime Ti 1–6 days before and after the earthquake specifically appear over the epicenter, which strongly suggests that DEMETER observes SIAs of the 2008 M8.0 Wenchuan earthquake.

1. Introduction

Seismo-ionospheric anomalies (SIAs) have been intensively investigated (e.g. Hayakawa and Fujinawa, 1994; Hayakawa, 1999; Hayakawa and Molchanov, 2002; Pulinets and Boyarchuk, 2004). To discriminate SIAs from anomalies caused by global (such as solar disturbance and magnetic storm) effects, and to confirm them being related to earthquakes, a spatial analysis on global satellite observations is ideally employed. DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) is a micro-satellite that observes the region within 65° geomagnetic latitude in a 680 km altitude, 98.3° inclination orbit. It is a sun-synchronous satellite and passes in almost the same local time everywhere in the daytime at 1030 LT and the nighttime at 2230 LT. It was launched in June 2004 and stopped in December 2010. Its main scientific objectives are the detection and characterization of ionosphere electrical and magnetic disturbances in connection with a seismic activity (Cussac et al., 2006). DEMETER carries 6 payloads: IAP (Instrument d’Analyse du Plasma) detecting the plasma density and the ion composition (Berthelier et al., 2006); ISL (Instrument Sonde de Langmuir) measuring the electron density and temperature (Lebreton et al., 2006); RNF (Réseau de Neurones Formel) performing an automatic identification and classification of the whistlers from ELF to VLF electric field measurements (Elie et al., 1999); and ICE (Instrument Champ Electrique), IMS (Instrument Magnetic Search Coil), and IDP (Instrument for the Detection of Particle) measuring the electric field, magnetic field, and high energy particles, respectively. Numerous research articles report density variation and amplitude change of electro-magnetic emissions above earthquake regions by means of DEMETER observations (cf. http://smsc.cnes.fr/DEMETER/A_publications.htm).

(2009) examine the seismo-ionospheric anomalies of the GPS TEC (Total Electron Content) associated with large earthquakes by means of the GIM (Global Ionosphere Map, ftp://cddisa.gsfc.nasa.gov/pub/gps/products/ionex). They find that the GIM TEC above the epicenter often pronouncedly decreases day 3–5 before $17 \ M \geq 6.3$ earthquakes during a 10-year period of 1 May 1998–30 April 2008, as well as significantly decreases 2–6 days before

![Diagram](https://example.com/diagram.png)

Fig. 1. The global distributions of DEMETER Ne, Ni, Te, and Ti (from top to bottom) 1–6 days before and after (right and left) the 2008 M8.0 Wenchuan earthquake. (a) Daytime at global 1030 LT and (b) nighttime at global 2230 LT. The red star denotes the epicenter (30.986° N, 103.364° E) and 3 reference regions (A: 190° E, B: 280° E, C: 10° E) in the same magnetic latitude (17° N) but separated by 90°, 180° and 270° are indicated. The black curve is the geomagnetic equator. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
In this paper, to confirm if seismo-electromagnetic anomalies specifically appear over the Wenchuan epicenter, we globally examine the daytime (1030 LT) and nighttime (2230 LT) electron density (Ne), electron temperature (Te), ion density (Ni), ion temperature (Ti) recorded by DEMETER 1–6 days before and after the M8.0 Wenchuan earthquake. We cross compare the four DEMETER quantities over the epicenter and 3 reference regions in the same magnetic latitude but separated by 90°, 180° and 270° in longitude 1–6 days before and after the earthquake. Finally, the global distributions of the detected anomalies in the four DEMETER quantities are investigated to see if the observed SIAs specifically appear over the epicenter and in turn are possibly associated with the earthquake.

2. Observation and data analysis

Fig. 1a and b displays global fixed-local-time distributions of the daytime (1030 LT) and nighttime (2230 LT) Ne, Ni, Te, and Ti...
1–6 days before and after the M8.0 Wenchuan earthquake, respectively. It seems that the four quantities before and after the earthquake in both the daytime and nighttime yields no obvious difference. To conduct a rigorous/quantitative study, and to see whether the anomalous changes mainly occur around the epicenter, we isolate and examine the four quantities within a 10°-latitude × 10°-longitude center the epicenter (30.986°N, 103.364°E) and 3 reference regions (A: 190°E, B: 280°E, C: 10°E) in the same magnetic latitude (17°N) but separated by 90°, 180° and 270° in longitude 1–6 days before and after the earthquake.

It is known that ionospheric data are positive values, which inhabit a right-skewed and heavy-tailed distribution, and therefore, a median base analysis is suitable to be applied. The box-and-whisker procedure (Wilcox, 2010) is one kind of median base analyses, which has an advantage of visually observing the significant difference among multi-datasets simultaneously. Here we statistically investigate each quantity 1–6 days before and after the earthquake in the epicenter and 3 reference regions with box-and-whisker (box) plots in the daytime (Fig. 2a) and the nighttime (Fig. 2b). The lower (upper) quartile is the number such that at least 25% (75%) of the sorted observations are less (greater) than or equal to it. In the plot, the ends of a box are the upper and lower quartiles. The horizontal line in the box denotes the statistical median. The dots are the outliers which exceed 1.5 times the interquartile range from the end of the box and are unusually small or large. The lines extending out from the box are called whiskers. The ends of the whiskers mark the smallest and largest values which are not outliers. When one median (i.e. horizontal line) is not overlapped with the other's upper and lower quartiles (i.e. box), the two are declared to be different under significance level 0.06 (=0.25×0.25) (Wilcox, 2010). Fig. 2a (b) reveals that in general there are no significant differences in the four quantities over the 4 regions, except Ti over the epicenter and C regions (except Ne and Ni over the epicenter region) in the daytime (in the nighttime).

Although the nighttime Ne and Ni, and the daytime Ti over the epicenter region 1–6 days before significantly differ from those after the earthquake, it still cannot be confirmed that they are possibly the earthquake related, because global effects, such as solar radiations, solar winds, magnetic storms, and neutral winds (cf. Liu et al., 2004, 2006, 2013), could result in similar changes/anomalies. To discriminate the global and earthquake (local) effects, we conduct a global search to find the spatial distribution of the significant difference of the nighttime Ne, the nighttime Ni, and the daytime Ti. Fig. 3a and b reveals that the

![Figure 3](image-url)
Fig. 3. The global distributions of the significant differences between 1 and 6 days before and those after the earthquake in (a) the nighttime Ne; (b) the nighttime Ni; and (c) the daytime Ti. The intersection of the global distributions of the significant differences of (d) the nighttime Ne and nighttime Ni; and (e) the nighttime Ne, nighttime Ni, and the daytime Ti.

![Figure 4](image-url)
Fig. 4. The statistical analysis on the GIM TEC at various time points over the epicenter region 1–6 days before and after the Wenchuan earthquake. The black and gray boxes denote data observed before and after the Wenchuan earthquake, respectively.
Liu et al. (2009) report the GIM TEC over the 2008 M8.0 Wenchuan earthquake anomalously decreases in the afternoon period of day 6–4 and in the late evening period of day 3 before the earthquake. Chen et al. (2015) statistically investigate the relationship between the GIM TEC and 56 M ≥ 6.0 earthquakes during 1998–2013 in China, and find that the TEC significantly decrease 0600–1000 LT 1–6 days before the earthquake. Figs. 2 and 3 show that the DEMETER Ne and Ni significantly decrease 1–6 days before the 2008 M8.0 Wenchuan earthquake, which generally agree with Liu et al. (2009) and Chen et al. (2015). However, it should be noticed that the DEMETER Ne and Ni significantly decrease in the nighttime of 2230 LT, while the GIM TEC anomalously decrease in the afternoon period of 1200–1800 LT reported by Liu et al. (2009) and in the morning period of 0600–1000 LT by Chen et al. (2015). In fact, Chen et al. (2015) also report that the GIM TEC can significantly decrease in the afternoon period 1–6 days before M ≥ 6.5 earthquakes in China. To clarify this discrepancy, we also examine the difference in the GIM TEC over the epicenter 1–6 days before and after the Wenchuan earthquake in various local time points. Fig. 4 shows that the GIM TEC becomes different from 1900 to 0900 LT, significantly 2100 to 0300 and 0900 LT.

Based on the plasma characteristics of quasi-neutrality, the densities of Ne and Ni should be nearly identical. Thus, the significant differences of the nighttime Ne and Ni would concurrently occur. The superposition (or intersection) of Fig. 3a and b reveals that the significant differences of the nighttime Ne and Ni and the daytime Ti would concurrently occur. The superposition (or intersection) of Fig. 3d reveals that the significant differences of the nighttime Ne and Ni and the daytime Ti would concurrently occur. Since different Seismo-Ionospheric anomalies often coexist and generally last for a long period of time, therefore the significant differences of the nighttime Ne, the nighttime Ni, and the daytime Ti could be further superimposed/intersected. Fig. 3e displays that the three significant differences concurrently and specifically appear around the Wenchuan epicenter. In conclusion, in the nighttime the DEMETER Ne and Ni around the epicenter significantly decrease 1–6 days before the 2008 Wenchuan earthquake. The spatial analysis on the global distribution of the significant differences confirms that the nighttime Ne and Ni anomalous decrease are associated with the 2008 M8.0 Wenchuan earthquake.

Acknowledgements

JYL conducted the study at Beijing University of Technology during his visiting period. This work was partially supported by Ministry of Science and Technology to National Central University Grant MOST 103-2628-M-008-001. Financial support from the National Key Technology R&D Program under Grant #2012BAK29800 and Natural Science Foundation of China under Grant #11172012 are gratefully acknowledged. The work is a part of results of the project “Multi-instrument space-borne observations and validation of the physical model of the Lithosphere–Atmosphere–Ionosphere–Magnetosphere Coupling” Granted by International Space Science Institute. The authors wish to thank YY Sun for scientific editing.

References

