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Abstract Effects of rapidly changing ionospheric weather

are critical in high accuracy positioning, navigation, and

communication applications. A system used to construct

the global total electron content (TEC) distribution for

monitoring the ionospheric weather in near-real time is

needed in the modern society. Here we build the TEC map

named Taiwan Ionosphere Group for Education and

Research (TIGER) Global Ionospheric Map (GIM) from

observations of ground-based GNSS receivers and space-

based FORMOSAT-3/COSMIC (F3/C) GPS radio occul-

tation observations using the spherical harmonic expansion

and Kalman filter update formula. The TIGER GIM

(TGIM) will be published in near-real time of 4-h delay

with a spatial resolution of 2.5� in latitude and 5� in lon-

gitude and a high temporal resolution of every 5 min. The

F3/C TEC results in an improvement on the GIM of about

15.5%, especially over the ocean areas. The TGIM highly

correlates with the GIMs published by other international

organizations. Therefore, the routinely published TGIM in

near-real time is not only for communication, positioning,

and navigation applications but also for monitoring and

scientific study of ionospheric weathers, such as magnetic

storms and seismo-ionospheric anomalies.
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content � FORMOSAT-3/COSMIC � Ionospheric weather �
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Introduction

The earth’s ionosphere becomes more relevant to human

society, as it influences the accuracy of positioning and

navigation and the quality of telecommunication (Davies

1990). Based on measurements of ground-based Global

Navigation Satellite System (GNSS) networks, the global

ionosphere map (GIM) of the total electron content (TEC)

is published daily by the International GNSS Service

(IGS), the Center for Orbit Determination in Europe

(CODE), the European Space Operations Centre (ESOC),

the University of Warmia and Mazury (UWM), the

NASA’s Jet Propulsion Laboratory (JPL), and the Tech-

nical University of Catalonia (UPC) (ftp://cddis.gsfc.nasa.

gov/gps/products/ionex/) since 1998 (Hernández-Pajares

et al. 2009).

Vertical TEC observations from hundreds of ground-

based receivers are estimated approximating the iono-

sphere as a thin layer and are interpolated globally using

spherical harmonic expansion (Schaer et al.

1995, 1996, 1998). Scientists have been using the GIM

TEC to study ionospheric weather, including the influence

of geomagnetic storms on the ionospheric TEC and

seismo-ionospheric precursors for recent devastating large

earthquakes. Huang et al. (2010) analyzed the GIM TEC

and showed the positive phase of the ionospheric storm at

the magnetic equator close to sunset near equinox. Jin et al.

(2017) studied the positive and negative ionospheric

response to the March 2015 strong geomagnetic storm

using the GIM TEC map. Liu et al. (2009, 2010, 2011)
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reported the temporal and spatial precursors in the GIM

TEC of the May 12, 2008, Mw7.9 Wenchuan earthquake,

December 26, 2004, M9.3 Sumatra–Andaman Earthquake,

and January 12, 2010, Mw7 Haiti earthquake.

However, the TEC from the ground-based receivers is

provided mainly over continental regions, which result in

the GIM TEC with better accuracy over the land but less

accuracy over the ocean. If the GIMs are available in real

time, then immediate correction of the positioning and

navigation is possible as well as the practical application of

monitoring the ionospheric weather.

Radio occultation (RO) observations from FOR-

MOSAT-3/COSMIC (F3/C) provide global TEC observa-

tions as well. However, the massive RO dataset has not yet

been standardly merged into GIM systems. Therefore, in

this study, the Taiwan Ionospheric Group for Education

and Research (TIGER) is constructing a GIM by adding

F3/C RO data into ground-based GPS and GLONASS TEC

(GNSS TEC hereafter) measurements from Taiwan Anal-

ysis Center for COSMIC (TACC). The goal of the TIGER

GIM (TGIM) is to be published in near-real time with a 4-h

time delay having a standard spatial resolution of 2.5� in

latitude and 5� in longitude and a high temporal resolution

of every 5 min (288 maps per day) for studying the iono-

spheric weather and for building an ionospheric data

assimilation system.

Observation

Both ground-based GNSS TEC and space-based GPS TEC

are used in this study. TEC measurements from 123

ground-based GNSS receivers (Fig. 1) provided by TACC

are used to construct the TGIM. The GPS consists of more

than 24 satellites distributed over six orbital planes and

encircling the globe at near 20,200 km altitude. Each GPS

satellite transmits radio signals in two L-band frequencies

(f1 = 1575.42 MHz and f2 = 1227.60 MHz). Since the

ionosphere is a dispersive medium, electron density

information can be retrieved from carrier phases and code

pseudorange observations obtained from dual-frequency

receivers. The slant TEC (STEC), which is the integration

of electron density along the ray path from a ground-based

GPS receiver (Rx) to a GPS satellite (Tx), can be expressed

as

STEC ¼
ZRx

Tx

Nds ¼ 1

40:3

f 21 f
2
2

f 21 � f 22

� �
p2 � p1 þ resð Þ ð1Þ

where N is the electron density and s denotes the integra-

tion path along a given ray path; p1 and p2 are the pseu-

doranges in meters for the two frequencies, and res is the

residual term. The STEC derived from carrier phases can

also be levelled based on the pseudorange TEC to increase

the accuracy and precision of the measurements signifi-

cantly. The residual includes satellite differential code

biases (DCB) and receiver DCB. Both the DCB values are

calibrated with the DCB data provided by CODE. The

receiver DCB values are estimated by the least squares

method every 2 h (Jin et al. 2012) if the DCB data for

receivers are unavailable at CODE. The STEC along the

ray path can be converted to the vertical component of

VTEC at its associated longitude and latitude (Tsai and Liu

1999), assuming that the greatest electron density in the

ionosphere usually is situated near 450 km altitude.

GLONASS TEC is derived in the same algorithm as above

except for different sounding frequencies.

The ground-based GNSS receivers are widely dis-

tributed throughout the world, except for the oceans,

deserts, and polar regions. The globally and uniformly

distributed measurements recorded by the space-based F3/

C RO technique fill the gaps of ground-based observations

(Fig. 1). The F3/C mission that consists of six

microsatellites with the GPS occultation experiment

(GOX) payload carries out atmospheric and ionospheric

RO soundings since April 2006. F3/C provides observa-

tions of vertical structures of the global ionospheric elec-

tron density from 100 km altitude up to the satellite altitude

near 800 km. RO observations, particularly from F3/C,

have significantly improved our capability of monitoring

the global ionosphere. The F3/C RO electron density pro-

files can be freely downloaded in near-real time (available

on the website within 45 min) from the ionPrf file in the

second data level, which is processed by the COSMIC Data

Analysis and Archive Center (CDAAC, http://cosmic-io.

cosmic.ucar.edu/cdaac/index.html) and TACC (http://tacc.

cwb.gov.tw/cdaac/index.html), using the Abel inversion

technique of TEC along the LEO to GPS path since May

2006.

Fig. 1 Global distributions of ground-based GNSS receivers (red

triangles) from IGS and 1-day F3/C RO soundings (cyan dots) reveal

that the GNSS receivers are mainly on continents and the F3/C

soundings are distributed nearly uniformly around the globe. The dots

stand for the distribution of daily F3/C observations, and red triangles

refer to 123 ground-based GPS/GLONASS receivers
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The F3/C also provides an opportunity to observe the

morphology and variations in the inner magnetosphere in

the planetary scale above 800 km altitude. Based on the

dual-frequency difference, the F3/C measurement can be

converted to differential code biases (DCB)-calibrated,

multipath-calibrated plasmaspheric electron content. The

plasmaspheric content can reach up to about 12 TECU

around the dayside magnetic equator (Zhang and Tang

2014). The F3/C TEC we used is the sum of F3/C TEC0

(0 km to LEO altitude) and the F3/C plasmaspheric content

(LEO to GPS altitude).

This study applies the ground-based GNSS and F3/C

TEC observations in March 2015 to construct the TGIMs

every 5 min. The total numbers of F3/C and ground-based

GNSS TEC observations are 20,797 (about 2 every 5 min.)

and 7 9 107 (about 8000 every 5 min.), respectively, in

this month. The number of the ground-based GNSS

observation is much higher than that of the F3/C obser-

vation. However, the F3/C provides observation over areas

such as oceans, desserts, and polar regions, where there

rarely are ground-based GNSS receivers.

Construction of TIGER GIM

This section illustrates the construction of the high tem-

poral resolution (5 min) TGIM in near-real time (4-h

delay) by using the spherical harmonic expansion and

Kalman filter update formula with TECs from ground-

based GNSS receivers and the F3/C on the magnetic apex

coordinates (Richmond 1995) using realistic geomagnetic

fields (International Geomagnetic Reference Field, http://

www.ngdc.noaa.gov/IAGA/vmod/ igrf.html). The

flowchart shown in Fig. 2 shows that we first construct a

global TEC map using the spherical harmonic expansion

from ground-based GNSS TEC. The second step is to

assimilate the 5-min F3/C TEC observation into the global

TEC map using the Kalman filter update formula.

The equation describes the construction of a global TEC

map using the spherical harmonic expansion (Schaer et al.

1996),

GIM b; sð Þ ¼
Xnmax

n¼0

Xn
m¼0

~Pnm sin bð Þ � anm cosmsþ bnm sinmsð Þ

ð2Þ

where ~Pnm is the normalized associated Legendre function

of degree n (0,…,nmax = 15) and order m (0,…,n); anm and

bnm are coefficients derived from least squares fitting of

ground-based TEC observations; b is latitude; s is defined

as t ? longitude-p; and t is universal time (UT).

Figure 3 shows an example of construction of the TGIM

at one time step. Panel (a) displays the TEC measured by

the ground-based GNSS receivers from 1600 to 1605 UT

on March 21, 2015. Since the TEC map constructed by

using the ground-based TEC data and the spherical har-

monic expansion may fluctuate a lot in regions where no

ground-based GNSS receivers are located, Schaer et al.

(1998) suggested that filling the data gap using pseudo-

observations is greatly helpful for constraining the values.

The pseudo-observation we used is the TGIM from pre-

vious time step by shifting 1.25� (360�/288) westward

which is based on the assumptions that the global feature of

TEC is sun synchronous and does not change a lot within a

short period. Panel (b) is the TEC map constructed from

ground-based GNSS TEC with the pseudo-observation

using the spherical harmonic expansion.

The Kalman filter update formula (Welch and Bishop

1995) is an efficient way to assimilate both ground- and

space-based observations into background model vectors,

e.g., TEC from International Reference Ionosphere (IRI),

and to construct a TEC map for monitoring the ionospheric

weather (Fuller-Rowell et al. 2006; Lin et al. 2012; Sun

et al. 2013). In this study, the global TEC map constructed

by using the spherical harmonic expansion is treated as the

background model vector. The Kalman filter update for-

mula assimilates the F3/C TEC observations into the global

TEC map and then the TGIM VTEC is given by

TGIM ¼ xþ K z� Hxð Þ ð3Þ

in which

K ¼ PHT HPHT þ R
� ��1 ð4Þ

where K is the Kalman gain; z and x represent the obser-

vation and background model vectors, which are obtained

from the F3/C-observed TEC seen in panel (c) and the

global TEC map, respectively. The background error

covariance P is parameterized by a Gaussian function,

G b; að Þ ¼ e
� a�aRð Þ2þ b�bRð Þ2

2awbw , where a and b are the longitude

and latitude referring to the reference point at aR and bR. aw
Fig. 2 Flowchart of the construction of the TIGER GIM (TGIM)
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and bw are the widths of the bell-shaped surface of the

Gaussian function in longitudinal and latitudinal directions,

respectively. The measurement covariance R is a diagonal

matrix. Values of R are assumed to be ten times smaller

than P. As R approaches zero, the measurement is trusted

much more than the background vector. The H operator is

an identity matrix since both the background and obser-

vational vectors have the same unit. We assume these

covariance matrices are constant throughout the entire

procedure. Panel (e) is the difference between the TGIM

seen in panel (d) and the global TEC map seen in panel

(b) at the time step of 1600–1605 UT. It displays the

enhancement caused by the F3/C TEC near 30�N, 140�E.
The Kalman filter update formula with the covariance

matrices has been applied to construct the regional TEC

map over the continent of USA to study the storm-en-

hanced density (Sun et al. 2013) and to assimilate F3/C

electron density peak height into the ionosphere plasmas-

phere model to get the better thermospheric neutral wind

and electron density (Sun et al. 2015). The covariance

matrixes computing from data or background vectors will

be considered if the prediction part is included. Sun et al.

(2013) estimated the nonstationary wavelet-based back-

ground model error covariance from the ground-based

GNSS TEC observations. Lin et al. (2015) derived the

nonstationary background model error covariance from the

IRI-simulated electron density profiles.

Figure 4 shows the impact of the F3/C TEC data on the

TEC map using the spherical harmonic expansion. The top

panel is the TEC map constructed from the ground-based

GNSS and the two F3/C TEC observations using the

spherical harmonic expansion at the step of 1600–1605 UT.

The bottom panel shows the differences between the TEC

maps with and without including the two F3/C TEC data.

The difference pattern is similar to that of Fig. 3e, but the

values are smaller. The reason for the weaker influence is

because the fitting using the global spherical harmonics

tends to smooth out the local influence from the data. The

Kalman filter update formula with the covariance is

designed for spreading the influence of the data on the

background model vectors locally.

Results

Figure 5 shows a snapshot of the TGIM at the time step of

1600–1605 UT onMarch 21, 2015, compared with the GIMs

published by CODE, ESOC, UWM, JPL, and UPC at 1600

UT. All these GIMs show the typical latitudinal and longi-

tudinal variations in TEC at the one time step. Figure 6

Fig. 3 Example of construction

of the TGIM. a GNSS TEC

observations, b global TEC map

from the GNSS TEC

observations, c two F3/C TEC

observations, and d TGIM on

geomagnetic coordinate at the

time step of 1600–1605 UT on

March 21, 2015. e The

difference between the TGIM

and the global TEC map

displays the effect of the two

F3/C data on the TEC values
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displays the correlations between the TGIM and the entire

data set of the other GIMs collected inMarch 2015. The high

correlation (correlation coefficients are near 0.95) reveals

that the overall features of those GIMs are similar.

To show how much the TGIM differs from the GIMs of

other centers, the rootmean square (RMS) between the TGIM

and the rest of the GIMs has been estimated and is shown in

Fig. 7. The monthly averaged global RMS values between

TGIMandCORG,EHRG, IGRG, JPRG, andUHRGare 7.68,

7.00, 7.52, 9.05, and 7.95TECU, respectively. The 7–9TECU

differences can be attributed to the following reasons: (1) The

construction of the TGIM is based on the data collectedwithin

a 5-min time interval that is much short than the other GIMs.

(2) The TGIM is constructed on the apex coordinates that

differs from the other GIMs.

The time series of RMS estimated at each latitude belt

show the differences in detail. As shown in Fig. 7, the

TGIM is closer to the other GIMs in the Northern Hemi-

sphere. The smaller difference is a result of most ground-

based GNSS receivers being located in the Northern

Hemisphere. The larger discrepancy in the Southern

Hemisphere can be attributed to different satellite data sets

being involved in the different GIM systems.

Fig. 4 Effect of the F3/C TEC on the global TEC map using the

spherical harmonic expansion. (Top) TEC map constructed from the

ground-based GNSS and the two F3/C TEC observations at the time

step of 1600–1605 UT on March 21, 2015. (Bottom) Differences

between the TEC maps with and without including the two F3/C TEC

observations

Fig. 5 Snapshots of global

TEC structures in the GIMs at

1600 UT on March 21, 2015.

a TGIM and the GIMs

published by b CODE (CORG),

c ESOC (EHRG), d UWM

(IGRG), e JPL (JPRG), and

f UPC (UHRG)

GPS Solut (2017) 21:1583–1591 1587

123



The F3/C soundings are distributed nearly uniformly

around the globe. Such coverage provides an excellent

opportunity to fill the data gap of the ground-based GNSS

TEC observations over the ocean, dessert, and polar areas. To

show the impact of the F3/C TEC on theGIM, the global TEC

map constructed only using ground-basedGNSSTEC and the

TGIM is validated with the TECs observed by Ocean Surface

Topography Mission (OSTM)/Jason-2. The altimeters on

boardOSTM/Jason-2 satellites observe the nadir vertical TEC

over the ocean region (Dumont et al. 2009). Figure 8 shows

the global distribution of the RMS between the OSTM/Jason-

2 and GIM TECs in March 2015. In this validation, we first

take the difference between the TGIM and theOSTM/Jason-2

TECs along the satellite ground track every 5 min per day, and

then, the RMS is computed from the differences accumulated

at each grid point over the entire month. The F3/C TEC

exhibits improvement on the GIM over the ocean areas of

about 15.5% ((8.31 TECU–7.02 TECU)/8.31 TECU). It also

shows that assimilating of the F3/C TEC improved the TEC

map atmiddle and high latitudes of the SouthernHemisphere,

especially the areas without ground-based GNSS receivers.

Discussion and conclusion

The high correlation between the TGIM and the GIMs

made available by the other five international organizations

suggests that the 5-min resolution TGIM is reliable to show

the overall features of global TEC. The near-real-time

TGIM allows scientists to not only evaluate the quality of

communication, positioning, and navigation applications,

but also study the ionospheric plasma physics and explore

Fig. 6 Correlation between the

TGIM and the other GIMs

published by a CODE, b ESOC,

c UWM, d JPL, and e UPC in

March 2015. The entire data

sets of the GIMs in this month

are used to compute the

correlations. Red line is the

linear regression line

Fig. 7 Time series of root mean square between TGIM and CORG,

EHRG, IGRG, JPRG, and UHRG (from top to bottom) in March 2015
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new sciences and findings, as well as assess the hazard of

forthcoming large earthquakes (Liu et al.

2009, 2010, 2011).

Following the success of F3/C, an additional 12 small

satellites of FORMOSAT-7/COSMIC-2 (F7/C2) will be

launched in 2018 and 2019. The upcoming F7/C2 satellite

mission will provide at least four times the amount of data

of F3/C, which results in a dense coverage. This new

satellite constellation mission is twice as larger than the

former and will provide 8000–10,000 space-to-space Glo-

bal Navigation Satellite System (GNSS) observations per

day. We expect that the denser RO soundings for F7/C2

can yield more improvement on the GIM.

The near-real-time TGIM can be used to quickly provide

horizontal structure of ionospheric electron density to the data

assimilation procedure (Lin et al. 2015). This procedure can

produce three-dimensional (3D) ionospheric electron density

structure for monitoring of space weather in near-real time.

That benefits comprehensive studies of ionospheric quiet/

storm time condition, ionosphere–thermosphere interaction,

and physical characteristic of ionosphere such as sudden

stratosphere warming, Weddell Sea anomaly, electrodynam-

ics, E 9 B drift, as well as ionospheric earthquake precursor

studies.Moreover, the 3Dcovariancematrices estimated from

observations or simulations can be further updated if the

Kalman filter time update formula is included for the predic-

tion purpose (Welch and Bishop 1995).

In conclusion, F3/C ionospheric RO soundings signifi-

cantly improve the TGIM over the ocean areas, especially in

the Southern Hemisphere. The near-real-time TIGER GIM

highly correlates with the GIMs released by the other five

international organizations, which allows scientists to study

the ionospheric weather related to magnetic storms, sudden

stratospheric warming, midlatitude trough, midlatitude sum-

mer night anomaly, and the seismo-ionospheric precursors.
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