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Abstract
Scientists investigating the coupling between the lithosphere, atmosphere, and ionosphere 
(LAI) require multiple instruments installed on and near the Earth’s surface and aboard 
satellites orbiting the Earth. However, challenges always occur owing to a lack of observa-
tion data from other monitoring instruments and/or the distance between distinct instru-
ments. A novel system for monitoring vibrations and perturbations in the LAI (MVP–
LAI) was established in the countryside of Leshan City, Sichuan Province, China, in June 
2021. Twelve different types of instruments with 18 devices were set within an area of 
50 m × 50 m. The other two were installed approximately 20 km away to avoid interference. 
These instruments routinely monitor the changes in at least 14 geophysical parameters with 
short sampling intervals, available for capturing waves propagating from the subsurface to 
the ionosphere. Once the observations retrieved from the China Seismo-Electromagnetic 
Satellite and the radio occultation are integrated, the monitoring of vibrations and pertur-
bations can reach ~ 800 km above the Earth’s surface. The system is mainly operated by 
the China University of Geoscience (Wuhan), China and will officially start functioning in 
September 2021. All the efforts benefit the investigation of the causal mechanisms of LAI 
coupling and expose the potential sources of vibrations and perturbations, incorporating 
observations from other spheres.
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Article Highlights 

• A novel system has been established in Southwest China to study the Lithosphere–
Atmosphere–Ionosphere (LAI) coupling

• 12 different instruments were mainly installed within an area of ~ 2500  m2 for monitor-
ing vertical perturbations in LAI

• The instrumental array is utilized to capture perturbations between − 5 m underground 
and ~350 km in altitude

1 Introduction

Coupling of Earth’s spheres from the subsurface to space has drawn the interest of sci-
entists for decades. Numerous studies (Huang et  al. 1985; Gokhberg et  al. 1989; Davies 
1990; Gufeld et al. 1992; Hayakawa et al. 1996a; Molchanov and Hayakawa 1998; Bishop 
and Straus 2006; Liu et al. 2006a,b, 2016a,b; Rishbeth 2006; Hayakawa 2007, 2011; Xiao 
et al. 2007; Oyama et al. 2008; Xu et al. 2008; Chakrabarti 2010; Hayakawa and Hobara 
2010; Sun et  al. 2011; Polyakova and Perevalova 2011; Rozhnoi et  al. 2013; Ryu et  al. 
2015; Sorokin et al. 2015; Kelley et al. 2017; Zhou et al. 2017; Astafyeva 2019; Laštovička 
and Šindelářová 2019) reported that activities in the lithosphere, atmosphere, and iono-
sphere (LAI) are interactive.

Changes in the lower atmosphere can drive ionospheric dynamics and structures. The 
planetary-scale distribution of convection in the troposphere along the equator (e.g., 
Walker circulation) can induce the wave-four structure of the equatorial ionospheric anom-
aly (Immel et al. 2006; Lin et al. 2007; Wan et al. 2008). Atmospheric tides and planetary 
waves comprise the largest portion of the well-known wave-four structure (Chang et  al. 
2013, 2016). The El Niño—Southern Oscillation (ENSO) is the most significant dynamic 
driver of inter-annual variations in the troposphere. ENSO significantly changes the circu-
lation and distribution of convections that modulate the quasi-biennial oscillation of wind 
and tides from the stratosphere to the ionosphere (Sun et al. 2018, 2019).

Severe weather activities in the troposphere generate atmospheric gravity waves 
(AGWs) that propagate upward to the ionosphere and induce traveling ionospheric distur-
bances and irregularities. For example, Xiao et al. (2007) examined the data of the iono-
spheric HF Doppler shift during 24 strong typhoons from 1987 to 1992. Their analysis 
revealed the common features of ionospheric responses to typhoons. They suggested that 
typhoons are an effective wave source especially when a typhoon is landing on or near 
a mainland coast.  Nishioka et  al. (2013) examined the ground-based Global Navigation 
Satellite System (GNSS) total electron content (TEC) observations and showed concen-
tric waves in the ionosphere after an enhanced Fujita scale (EF-scale) 5 tornado in Moore, 
Oklahoma, on 20 May 2013. Chou et  al. (2017a, 2017b) examined the TEC data and 
reported that the super typhoons Meranti and Nepartak in 2016 induced concentric trave-
ling ionospheric disturbances and plasma instabilities. Moreover, solar eclipses can trigger 
AGWs in the lower atmosphere that propagate upward and induce bow waves and irregu-
larities in the ionosphere (Liu et al. 2011a; Wang et al. 2021). Sun et al. (2021a) reported 
TEC perturbations with wavelength of ~ 2700 km and period of ~ 3.5 h due to the annular 
solar eclipse in the nighttime on 21 June 2020. The large-scale perturbations propagating 
in a northwestward direction after sunset behave as a solar terminator wave. However, the 
exact origin of the eclipse-induced atmospheric gravity waves have not yet been identified 
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due to the complex of the ionosphere influenced from the lower-lying atmospheric regions 
(Koucká Knížová et al. 2021).

Large surface waves due to tsunami or earthquakes can trigger significant ionospheric 
disturbances (Liu et al. 2006a,b, 2011b; Kakinami et al. 2012; Chum et al. 2016). The large 
ocean waves of tsunami reflected by multiple sources, such as seamounts, islands, and 
ridges, can excite tremendous ionospheric and atmospheric waves that propagate in various 
directions, cross at arbitrary angles (Sun et al. 2021b), and keep the ionosphere disturbed 
for hours to days (Chou et al. 2020; Yan et al. 2018). On the other hand, space weathers 
due to solar activities, such as coronal mass ejection, solar wind blowing, flare, and eclipse, 
can largely disturb the Earth’s magnetic field, electric field, plasma distribution, and cur-
rent systems, as well as the thermospheric neutral density, compositions, temperature, 
and winds that further modulate the ionospheric dynamics (Cander 2019; Materassi et al. 
2020; Liu and Wan 2020). The mixture of both the impacts from above (from solar) and 
below (near surface) causes investigating the origin, propagation, and evolution of waves 
and perturbations in different Earth’s spheres remaining challenging (Sun 2019). Numer-
ous studies have made great efforts to unravel the complex ionospheric disturbances caused 
by changes in climate and weather in the lower troposphere and surface waves; however, 
this issue is still under investigation because the disturbances are much more persistent and 
complicated than previously thought.

The LAI coupling can be excited by sources in the lithosphere through promising chan-
nels (Hayakawa 2015, 2016). Gas release near the Earth’s surface perturbs the conductiv-
ity in the atmosphere and changes the atmospheric electric field, leading to ionospheric 
modification (Pulinets and Boyarchuk 2004; Sorokin et al. 2006; Pulinets and Ouzounov 
2011; Harrison et al. 2010, 2014). An increase in subsurface conductivity can excite the 
occurrence of cloud-to-ionosphere lighting that changes in the ionosphere through heat-
ing and/or ionization processes (Inan et al. 1991; Pasko et al. 1997; Cho and Rycroft 1998; 
Rodger 1999; Takahashi et al. 2003; Hayakawa et al. 2004). Acoustic gravity waves close 
to the Earth’s surface can be generated by variations in temperature and/or ground vibra-
tions (VanZandt 1985; Davies 1990; Tsuda et al. 1994; De la Torre et al., 1999; Hickey 
et al. 2001; Sun et al. 2016; Chou et al. 2020; Yang et al. 2019, 2020; Yang and Hayakawa 
2020; Chen et  al., 2020, 2021a). The upward propagation of acoustic gravity waves can 
perturb the electron density in the ionosphere (Molchanov et al. 2001; Miyaki et al. 2002; 
Shvets et al. 2004; Korepanov et al. 2009; Kasahara et al. 2010; Hayakawa 2011; Sun et al. 
2011, 2016; Oyama et al. 2016; Liu et al. 2016c; Chum et al. 2016). On the other hand, 
variations in the electromagnetic field can directly induce changes in the ionosphere due 
to radio emissions (Fraser-Smith et al. 1990; Molchanov et al. 1993, 1995; Molchanov and 
Hayakawa 1995; Hayakawa et al. 1996b).

In contrast, responses in the lithosphere can be caused by perturbations from space and 
the ionosphere. The energy carried by solar winds can influence the electromagnetic field 
around the Earth’s surface through electromagnetic coupling (Pulinets 2009). The energy 
can change the ionospheric current at an altitude of ~ 100 km, dominating the diurnal vari-
ations of the geomagnetic field near the Earth’s surface (Yamazaki and Maute, 2016). On 
the other hand, the electromagnetic field near the Earth’s surface can be changed by geo-
magnetically induced currents because electrically charged particles pass through the iono-
sphere (Lucas et al. 2020). These aforementioned studies propose promising mechanisms 
for perturbations and vibrations in one sphere, causing changes in the other two. However, 
a system comprising numerous instruments that can monitor the process of perturbations 
and/or vibrations between the ground and space at particular altitudes is insufficient.
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In 2021, a novel system was established in Sichuan, China (29.6°N, 103.9°E) to moni-
tor vibrations and perturbations in the LAI (the MVP-LAI system). The system is located 
on the western side of the Sichuan Basin and the eastern margin of the Tibet Plateau. A 
noticeable discrepancy of approximately 3000  m in altitude between the Sichuan Basin 
and the Tibet Plateau provides an excellent opportunity for monitoring vibrations and per-
turbations in the vertical direction. The system comprises 14 different instruments with a 
total of 22 devices that monitor changes in at last 14 distinct geophysical parameters for 
capturing vibrations and perturbations in the vertical direction, from the lithosphere to the 
ionosphere. These efforts are beneficial for understanding the physical processes of pertur-
bations and investigating the promising sources in LAI coupling.

2  The New Equipment for Monitoring Vibrations and Perturbations 
in the Lithosphere, Atmosphere and Ionosphere

The core location of the MVP-LAI system occupies ~ 400  m2 (20 m × 20 m). Twelve dis-
tinct instruments were installed on and around the core place (Fig. 1). A piezometer was 
placed at the bottom of the well at a depth of 5 m to monitor changes in water levels with 
a sampling interval of 2  s (please find more detailed information on the instruments in 
Table 1). Changes in air temperature in the wells 1, 3, and 5 m in depth and at 1.5 m above 
the Earth’s surface were recorded by four thermometers with a sampling interval of 1 min. 
Barometers were tied together with thermometers to monitor variations in air pressure at 
particular depths and altitudes. Two broadband seismometers with a sampling interval of 

Fig. 1  Photograph of the MVP-LAI system
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0.01  s were installed at the opposite side of the core place for investigating an azimuth 
of ground vibrations propagating around the MVP-LAI system. A ground-based GNSS 
receiver was installed on the core place to receive electromagnetic signals with a sampling 
interval of 1  s. The signals emitted from GNSS satellites are utilized to monitor crustal 
deformation. Meanwhile, the signals from the geostationary satellites of the BeiDou navi-
gation system (BDS) (Su et al. 2018) reveals changes in the TEC ~ 350 km in altitude over 
certain locations 24–7 without interruption. An all sky camera with 1939 × 1096 pixels 
was placed on the roof of a log cabin to observe variations in clouds. WPR (wind profile 
radar),  and RASS (radio acoustic sounding system) were set at the center of the place. 
The WPR and RASS were utilized to observe changes in temperatures, velocities, and azi-
muths of winds along the vertical direction from the subsurface to ~ 4 km in altitude. An 
udometer monitor precipitation around the system for corrections of water level records 
and clarify the impacts on the vertical electric field near the Earth’s surface due to rainfall. 
An emanometer was utilized to monitor changes in radon concentration in the air to inves-
tigate the relationship between the composition of air and the electric field near the Earth’s 
surface. A magnetometer and two atmospheric electric field meters were located approxi-
mately 40 m away from the core place. The magnetometer is used to observe variations in 
conductivity underground (Parkinson and Jones 1979; Chen et al. 2013, 2015; Mao et al. 
2020), changes in the geomagnetic field near the Earth’s surface (Gao et al. 2016, 2020; 
Chen et al. 2017, 2021b), lightning in the troposphere (Fraser-Smith and Kjono 2014), and 
changes in electric currents at ~ 100 km in altitude above the MVP-LAI system (Yamazaki 
and Maute, 2016). Records from atmospheric electric field meters can be utilized to study 
fluctuations in the vertical electric field near the Earth’s surface, which is beneficial for 
exposing lightning in the atmosphere. A meteor radar and a very high frequency (VHF) 
coherent scattering radar operated by the Wuhan University were located ~ 20 km south-
west away from the core to detect temperature and density in the atmosphere at ~ 80 km 
above the Earth’s surface and plasma irregularities at approximately 90–160  km in alti-
tude, respectively. These instruments are integrated to monitor variations of more than 14 
geophysical parameters, mainly ranging between -5 m underground and ~ 350 km in alti-
tude, simultaneously and to further examine the proposed promising mechanisms (Hay-
akawa 2015, 2016) of LAI coupling. Additionally, once observation data retrieved from the 
China Seismo-Electromagnetic Satellite (Shen et al. 2018a, 2018b) and radio occultation 
(Sun et al. 2016; Rajesh et al. 2021) are integrated, vibrations and perturbations existing 
between the subsurface and an altitude of ~ 800 km in altitude were captured.

3  Study Plans and Preliminary Results

The MVP-LAI system can be utilized to examine the promising mechanisms reported 
in previous studies (Hayakawa 2015, 2016). Once TEC variations in the ionosphere are 
caused by radon release, the emanometer can detect changes in radon concentration near 
the Earth’s surface. Anomalous phenomena in the atmospheric electric field can be moni-
tored using an atmospheric electric field meter. In addition, no noticeable anomaly was 
found in the other geophysical parameters. On the other hand, variations in TEC in the 
ionosphere can result from an increase in conductivity underground. Changes in under-
ground conductivity can be investigated by using the magnetic data through the Parkinson 
vector (Parkinson 1962; Parkinson and Jones 1979) and understood by the increase and 
depression of groundwater levels monitored by the piezometer. If acoustic gravity waves 
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are excited by changes in temperature and/or ground vibrations, the associated variations 
can be detected by thermometers and broadband seismometers through the frequency 
analysis method. Once acoustic gravity waves propagate upward, driving changes in the 
atmosphere, velocities, and azimuths of winds and the temperature profiles from the sur-
face to a few kilometers above change accordingly, which can be detected by using WPR 
and RASS. In addition, variations in the TEC can be caused by electromagnetic emission. 
The sources of electromagnetic emissions can be detected using data from magnetome-
ters and broadband seismometers. Once TEC variations are not dominated by the afore-
mentioned promising mechanisms, the examination of numerous geophysical parameters 
monitored using the MVP-LAI system are beneficial for exposing the potential sources and 
causal mechanisms. When perturbations in the ionosphere trigger ground vibrations due 
to changes in air pressure, responses to geophysical parameters in the atmosphere and the 
lithosphere can be detected by the magnetometer, barometers, and broadband seismom-
eters. If the perturbations trigger responses in the lithosphere due to electromagnetic induc-
tion, anomalous phenomena can be observed in the electric and magnetic fields but not 
in the air pressure and ground vibration. In short, aforementioned potential mechanisms 
of the LAI coupling can be directly examined by comparison among multiple observation 
data retrieved from different instruments through cross correlation methods in the temporal 
domain. Once observation data reveal potential relationships, they are transferred into the 
frequency domain by using the Fourier transform and/or the wavelet transform to inves-
tigate frequency characteristics of different physical parameters. Pronounced frequencies 
are compared with the results in previous studies for further determine causal mechanisms. 
Novel mechanisms would be found through repeated examination and inductive reasoning.

Fig. 2  Variations of the tem-
perature, seismic, air pressure, 
magnetic, and TEC data recorded 
on 6 and 10 February 2021. The 
black and blue curves denote 
the variations of the recorded 
data on 6 and 10 February 2021, 
respectively; a–e show the TEC, 
magnetic, air pressure data, tem-
perature, and ground vibrations, 
respectively
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Before the official function of the MVP-LAI system, some interesting phenomena were 
observed using partial instruments. Figure 2 shows the variations in temperature, ground 
vibrations, air pressure, geomagnetic field, and GNSS-TEC on 6 and 10 February 2021. 
Unusual TEC variations, namely two relatively local maxima, were found at ~ 12:00 LT, 
and ~ 16:00 LT on 6 February 2021 (Fig. 2a). This is significantly different from the sig-
nal maximum appearing at ~ 14:00 LT under normal conditions. No significant relationship 
was directly obtained from the comparison between the unusual TEC variations and other 
data (i.e., the geomagnetic field, air pressure, and temperature) in Fig. 2. We transferred 
these data into the frequency domain using the Fourier transform as shown in Fig. 3. Vari-
ations of TEC in a frequency band between 0.0009 Hz and 0.003 Hz on 10 February 2021 
are shown in Fig. 3a. Enhancements of amplitude in the frequency < 0.001 Hz are mainly 
ranged between ~ 8:00 LT and ~ 20:00 LT due to solar radiation. In contrast, enhancements 
of the amplitude in the frequency band of 0.001–0.002 Hz begin at ~ 8:00 LT, ~ 12:00 LT 
and ~ 16:00 LT. Enhancements can also be found at a frequency of ~ 0.0035 Hz for the mag-
netic field (Fig. 3b), at a frequency of ~ 0.002 Hz for the air pressure (Fig. 3c) and at a fre-
quency of ~ 0.002 Hz for the temperature (Fig. 3d) at ~ 08:00 LT and ~ 17:00 LT. Figure 3e 
shows that the frequency characteristics of gravity waves vary from the subsurface to 
350 km in altitude (Hines 1960; Chou et al. 2017a). An agreement between gravity waves 
and the enhancements at distinct geophysical parameters (Fig.  3a–d) in the frequency 
characteristics at distinct altitudes suggests that the local maxima of the TEC variations 
at ~ 08:00 LT and ~ 17:00 LT can be attributed to variations in the air pressure and tem-
perature near the ground. In contrast, no significant enhancement can be observed in the 

Fig. 3  Amplitude of the TEC, magnetic, air pressure, and temperature data on 10 February 2021 and the 
frequency characteristics of gravity waves varying from the Earth’s surface to 350 km in altitude; a–d show 
the amplitude of the TEC, magnetic (Mag), air pressure (AP), and temperature (T) data using the short-term 
Fourier transform on 10 February 2021. Frequency characteristics of gravity waves vary from the Earth’s 
surface to the 350 km in altitude are computed using the model and parameters in Hines (1960) and Chou 
et al. (2017a) shown in (e)
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geomagnetic data at ~ 16:00 LT. This suggests that the enhancements of TEC at ~ 16:00 LT 
are irrelevant to the contribution of gravity waves.

On 10 February 2021 earthquakes with magnitudes of 6.3, 6.1, and 7.7 occurred in 
Indonesia at 19:52:27 (UTC + 8) and southeast of the Loyalty Islands at 20:01:59 and 
21:19:55 (UTC + 8), respectively (see the associated information at USGS). Surface waves 
for these earthquakes arrived at the MVP-LAI system at ~ 20:32:40 LT, ~ 20:43:6 LT, 
and ~ 21:55:26 LT, as shown in Fig. 2d. However, no significant perturbation and/or distur-
bance triggered by the arrival of the surface waves can be directly found from the raw data 
shown in Fig. 2a–c. Variations in the TEC triggered by the upward propagation of acoustic 
waves due to the arrival of the surface waves (i.e., Rayleigh waves) in the frequency and 
temporal domains are shown in Figs. 4a–d and 5a–d, respectively. The air pressure changes 
accordingly in a similar frequency band (i.e., 0.01–0.03 Hz) as per the arrivals of the sur-
face waves (Fig. 4c–d). Variations in the geomagnetic field and TEC occur ~ 11 min after 
the arrival of surface waves because the upward propagation of acoustic waves from the 
lithosphere to the ionosphere takes ~ 11 min (Fig. 4a–b). The ground vibrations, magnetic 
field and TEC roughly share frequencies at 0.01–0.03 Hz. We further filtered these data 
using a band-pass filter with related frequency bands and focused on the data segments 
of the arrival of the Rayleigh waves triggered by the M7.7 earthquake (Fig. 5). Amplitude 
of the filtered data decrease after the wave arrivals that can be found in ground vibrations 
and air pressure (Fig.  5d). Variations in the filtered magnetic and TEC data are shifted 
by ~ 11 min for an effective comparison with the arrivals of the Rayleigh waves (Fig. 5c–d). 
Variations in the envelopes for the seismic, magnetic, and TEC data yield an approximate 

Fig. 4  Amplitude of the total electron content (TEC), magnetic, air pressure, and temperature data from 
20:00 to 23:30 (local time) on February 10, 2021; the frequency characteristics of acoustic waves vary from 
the Earth’s surface to the 350  km in altitude. a–d show the amplitude of the TEC, magnetic (Mag; the 
magnetic field), air pressure (AP), and seismic (GV; ground vibrations) data using the short-term Fourier 
transform on February 10, 2021. The vertical black line denotes the arrival time of the surface waves of the 
studied earthquakes. The dashed lines show the frequency-dependent energy associated with the arrivals of 
the seismic surface waves. Note that the dashed lines in (a) and (b) shift 11 min lately for comparison due 
to temporal period of acoustic wave propagation
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agreement. These results suggest that variations in the TEC are dominated by the upward 
propagation of acoustic waves excited by the arrival of Rayleigh waves, consistent with the 
results of previous studies (Liu et al. 2016c; Sun et al. 2016). This suggests that the MVP-
LAI system is suitably capable of examining the upward propagation of acoustic waves at 
different altitudes. In short, the preliminary results of the TEC perturbations excited by the 
acoustic waves due to the arrival of seismic surface waves and gravity waves (caused by 
changes in the surface temperature) suggest that the MVP-LAI system exhibits a suitable 
capability for capturing vibrations and perturbations.

Fig. 5  Filtered data associated 
with the arrival of seismic waves 
from 20:00 LT to 23:30 LT on 
10 February 2021. Green, red, 
and blue lines denotes varia-
tions of the filtered TEC, Mag, 
and AP data, respectively. Gray 
and black lines show the filtered 
GV data in different frequency 
bands. a shows the filtered data 
from 20:00 to 23:30; b–d reveal 
the filtered data in a particular 
segment as the seismic surface 
waves arrive. Note that the fil-
tered magnetic and TEC data are 
shifted 11 min early for compari-
son with the filtered seismic data 
as the acoustic waves take about 
11 min to propagate from the 
subsurface to the ionosphere at 
350 km in altitude in (b) and (c)
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4  Recent Developments and Conclusions

The MVP-LAI system improved the monitoring of electromagnetic signals. Electromag-
netic signals play an important role in studying the LAI coupling, such as electromag-
netic emission from the ground to the ionosphere, influences of lightning to the ground 
and the ionosphere, and changes in the conductivity underground, triggering variations 
in TEC. Currently, the magnetometer in the MVP-LAI system monitors changes in elec-
tromagnetic signals, ranging between DC and 10  Hz. This suggests that geomagnetic 
data records lack observations at relatively high-frequency bands and electric fields near 
the ground. Therefore, instruments that can simultaneously monitor changes in electro-
magnetic fields in a relatively high-frequency band will be included in the MVP-LAI 
system. Note that an atmosphere electric conductivity meter will be installed around the 
core place to monitor variations in electric conductivity near the Earth’s surface. The 
integration of atmosphere electric conductivity meter provides an excellent opportunity 
to examine that the role of the electric conductivity in perturbations of the ionosphere 
from the lithosphere and the atmosphere.

On the other hand, the BDS comprising five geostationary satellites will be further 
utilized in the MVP-LAI system. A few ground-based GNSS receivers will be estab-
lished on the north-eastern and north-western sides of the MVP-LAI system, leading 
to ionospheric pierce points (Liu et al. 1996), which are assumed to be 350 km in alti-
tude, “just” above the MVP-LAI system. The employee of the geostationary satellites 
produces continuous data in the TEC over the MVP-LAI system without discontinuity 
due to the GNSS satellite movement. Meanwhile, variations in TEC over the MVP-LAI 
system can be observed by at least two geostationary satellites that can create an excel-
lent opportunity to double examine the variations using different elevations and azimuth 
angles.

Additionally, the MVP-LAI system is also located in the high seismicity areas of 
Sichuan and Yunnan, which is the Sichuan Yunnan Earthquake Science Experimental 
Park of the China Seismic Experimental Site. High-density geophysical arrays were 
established in the experimental park for distinct scientific purposes. Once the MVP-LAI 
system and geophysical arrays are integrated, a three-dimensional monitoring system 
can be formed. Spatiotemporal variations in the TEC can be monitored using high-den-
sity ground-based GNSS stations. Changes in geophysical parameters near the Earth’s 
surface can be understood using multiple arrays. The four-dimensional monitoring sys-
tem can capture both vertical and oblique vibrations and perturbations with the advan-
tage of fully understanding the causal mechanism of LAI coupling.
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